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1 Introduction
Let 𝑋 be a “nice” topological space. Let 𝑈 ⊂ 𝑋 be an open dense subset, with open embedding 𝑗 : 𝑈 ↩→ 𝑋 . If F is a
perverse sheaf on 𝑈 , then there should a unique way to “minimally extend” F to a perverse sheaf on all of 𝑋 , pre-
serving certain properties such that irreducibility. It turns out this is true, and the functor is called the intermediate
extension, denoted by 𝑗!∗. More generally, let 𝜄 : 𝑉 ↩→ 𝑋 be a locally closed embedding. Then to any perverse sheaf
F on𝑉 , there is a functor ℎ!∗ extending it to a perverse sheaf on𝑋 , supported on𝑉 , and satisfying certain important
properties (for example, if F was irreducible, then so is ℎ!∗F ).

Deligne gave an explicit construction of the intermediate extension, which is very roughly stated as:

Theorem 1.1 (Deligne construction): Let F be a perverse sheaf on𝑈 . Then

𝑗!∗F = 𝜏≤−𝑑−1 𝑗∗F .

(This is not exactly true, but we’ll make this more precise later.)

Specifically, we want to use it in a “step by step” application of constructing 𝑗!∗F “by hand,” to be explained in Corol-
lary 1.5.

In [Wil15, Exercise 11.10], GeordieWilliamsonmakes the following claim (I think… it’s a bit hard to understand):
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Exercise 1.2: Let F be a perverse sheaf on𝑈 ⊂ 𝑋 . Then we can concretely realize 𝑝 𝑗!, 𝑗!∗, and 𝑝 𝑗∗ as
(a) 𝑝 𝑗!F = 𝜏≤−𝑑−2 𝑗∗F .
(b) 𝑗!∗F = 𝜏≤−𝑑−1 𝑗∗F .
(c) 𝑝 𝑗∗F = 𝜏≤−𝑑 𝑗∗F .

Once again, we’ll make this more precise in §1.2.

I couldn’t really find a reference for this, but everyone I asked said they’d never seen it before, so I’m inclined to
think that it’s at least not easy to track down in the literature. Anlong Chua and I spent a while trying to figure it
out, so I figured I’d write it up so I don’t have to go through the pains of reproving it.

1.1 The condition
The setting we will need is a bit more nuanced. Recall that a perverse sheaf on 𝑋 is a complex of sheaves, con-
structible with respect to some stratification of 𝑋 , satisfying perverse sheaf conditions outlined in Lemma 1.10. If
we specify the stratification, however, then we get a subcategory consisting of complexes which are constructible
specifically with respect to the given stratification. Therefore there are two cases: either we specify the stratification,
or we don’t.

1.1.1 Specifying the stratification

Let
𝑋 =

⊔
𝑋𝜆

be a stratification of 𝑋 , such that the star-pushforward along the inclusion of any stratum sends a local system of
finite type to a constructible complex (with respect to the stratification). This is what [Ach21, Definition 2.3.20] calls
a “good stratification;” it satisfies the important property that for any inclusion ℎ : 𝑌 ↩→ 𝑋 where 𝑌 is a union of
strata, thenℎ∗, ℎ!, ℎ∗, ℎ! all send constructible complexes (with respect to the stratification) to constructible complexes
(with respect to the stratification), see [Ach21, Lemma 2.3.22].

Our specific condition that we need to impose, is that there exists 𝑑 such that

𝑈 =
⊔

dim𝑋𝜆>𝑑

𝑋𝜆,

𝑍 =
⊔

dim𝑋𝜆=𝑑

𝑋𝜆,

and there exist no strata of dimension < 𝑑 .

Remark 1.3: One important consequence of this is that 𝑍 is genuinely the disjoint union of the strata which
comprise it. The reason is that each stratum inside of it is closed (as they are minimal dimension, hence their
closure must be a union of itself and lower-dimensional strata, of which there are none), so 𝑍 is set-wise the
disjoint union of closed subsets - but then viewing them as complements to the other strata in 𝑍 , they must also
be open in 𝑍 , hence are connected components of 𝑍 .

1.1.2 Not specifying the stratification

The difference is that now a perverse sheaf just needs to be constructible with respect to some stratification. In this
case, let F be a perverse sheaf on 𝑈 ; it is a constructible complex of sheaves on 𝑈 . Let 𝑗 : 𝑈 ↩→ 𝑋 be the open
embedding. Then 𝑗∗ sends constructible complexes to constructible complexes, so 𝑗∗F is a constructible complex of
sheaves on 𝑋 . Suppose it’s constructible with respect to some (good) stratification {𝑋𝜆}, such that𝑈 is also a union
of strata (we can always refine the stratification until this works). The specific condition that we need to impose
here is that there exists 𝑑 such that

𝑈 =
⊔

dim𝑋𝜆>𝑑

𝑋𝜆,
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𝑍 =
⊔

dim𝑋𝜆=𝑑

𝑋𝜆,

and there exist no strata of dimension < 𝑑 .

1.1.3 Conclusion

In summary, whether the stratification is given or not, we really need the complement 𝑍 of𝑈 to be a union of
strata which are all the same dimension 𝑑 . For now, feel free to imagine that

𝑍 =
⊔

dim𝑋𝜆≤𝑑
𝑋𝜆 = 𝑋 −𝑈 ,

and I’ll point out where it becomes necessary for this hypothesis.

1.2 A more precise formulation
Let us now precisely describe Deligne’s construction.

Theorem 1.4 (Deligne’s construction, reformulated): Let F be a perverse sheaf on 𝑈 ⊂ 𝑋 . If the stratifi-
cation is given, then we assume the condition in §1.1.1. If the stratification is not given, then we assume the
condition in §1.1.2. Then

𝑗!∗F = 𝜏≤−𝑑−1 𝑗∗F .

As a direct corollary, we can drop the hypothesis coming from §1.1 by iterating “step by step” over the dimensions.
However, first we reduce the problem a bit.

Let 𝑋 be a “nice” topological space, and 𝑈 ⊂ 𝑋 be some dense open subset of 𝑋 with open embedding 𝑗 : 𝑈 ↩→ 𝑋 .
Let F be a perverse sheaf on 𝑈 . Now we aim to compute 𝑗!∗F ; we know that 𝑗∗ 𝑗!∗F ≃ F , and in particular for any
open 𝑉 ⊂ 𝑈 with inclusion 𝑗̃ : 𝑉 ↩→ 𝑋 , we have

𝑗̃!∗ (F |𝑉 ) ≃ 𝑗!∗F .

Now since F is constructible, we know that there exists some open dense (smooth) 𝑉 ⊂ 𝑈 for which F |𝑉 is a local
system, shifted by dim𝑉 . Hence to compute 𝑗!∗F it suffices to assume that F is a shifted local system. (Note that if
we’re given a (good) stratification, as in the situation of §1.1.1, then it’s even easier: just choose the open stratum𝑈 ,
where F |𝑈 is a local system shifted by dim𝑈 .)
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Corollary 1.5 (constructing 𝑗!∗ step by step): Let 𝑗 : 𝑈 ↩→ 𝑋 be a (dense) open embedding, and F =

L[dim𝑈 ] is a perverse sheaf on 𝑈 which is specifically the shift of a local system L on 𝑈 . Then 𝑗∗F is con-
structible with respect to a stratification

𝑈 ⊔
⊔

𝑍𝜆

where
⊔

𝑍𝜆 = 𝑋 −𝑈 . Define𝑈𝑖 for 𝑖 = 0, 1, . . . , dim𝑈 to be

𝑈𝑖 := 𝑈 ⊔
⊔

dim𝑍𝜆≥𝑖
𝑍𝜆,

so that we have an increasing union

𝑈 = 𝑈dim𝑈

𝑗dim𝑈

↩−−−−→ 𝑈dim𝑈 −1
𝑗dim𝑈 −1
↩−−−−−→ · · ·

𝑗1
↩−→ 𝑈0 = 𝑋,

and
𝑈𝑖 −𝑈𝑖+1 =

⊔
dim𝑍𝜆=𝑖

𝑍𝜆 .

Then

𝑗!∗ (F ) =
(
𝜏≤−1 ◦ 𝑗1,∗

)
◦
(
𝜏≤−2 ◦ 𝑗2,∗

)
◦ · · · ◦

(
𝜏≤− dim𝑈 −1 ◦ 𝑗dim𝑈 −1,∗

)
◦
(
𝜏≤− dim𝑈 ◦ 𝑗dim𝑈 ,∗

)
(F ).

Proof. Since
𝑈𝑖 −𝑈𝑖+1 =

⊔
dim𝑍𝜆=𝑖

𝑍𝜆 .

we are in the setting of the Deligne construction, and can apply the Deligne construction (1.4) iteratively to the
chain of inclusions

𝑈 = 𝑈dim𝑈

𝑗dim𝑈

↩−−−−→ 𝑈dim𝑈 −1
𝑗dim𝑈 −1
↩−−−−−→ · · ·

𝑗1
↩−→ 𝑈0 = 𝑋 .

□

Remark 1.6: Amusingly, this covers the case when there is some integer 𝑡 for which no strata are of dimension
𝑡 , because we still treat the empty complement as having dimension 𝑡 .

Let us reformulate the exercise.

Exercise 1.7: Let F be a perverse sheaf on 𝑈 ⊂ 𝑋 . If the stratification is given, then we assume the condition
in §1.1.1. If the stratification is not given, then we assume the condition in §1.1.2.

Then we can concretely realize 𝑝 𝑗!, 𝑗!∗, and 𝑝 𝑗∗ as
(a) 𝑝 𝑗!F = 𝜏≤−𝑑−2 𝑗∗F .
(b) 𝑗!∗F = 𝜏≤−𝑑−1 𝑗∗F .
(c) 𝑝 𝑗∗F = 𝜏≤−𝑑 𝑗∗F .

This allows us to construct them “step by step,” exactly as in Corollary 1.5.

Of course, part (b) is Deligne’s construction (1.4); see for example [HTT07, Proposition 8.2.11].
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1.3 Facts we will need

Proposition 1.8 (𝑡-exactness): Let 𝑖 : 𝑍 ↩→ 𝑋 be a closed embedding.
• 𝑖! = 𝑖∗ is 𝑡-exact for both the standard and perverse 𝑡-structures.
• 𝑖∗ is 𝑡-exact for the standard 𝑡-structure and right 𝑡-exact for the perverse 𝑡-structure.
• 𝑖 ! is left 𝑡-exact for both the standard and perverse 𝑡-structures.

Let 𝑗 : 𝑈 ↩→ 𝑋 be an open embedding.
• 𝑗! is 𝑡-exact for the standard 𝑡-structure and right 𝑡-exact for the perverse 𝑡-structure.
• 𝑗∗ is left 𝑡-exact for both the standard and perverse 𝑡-structures.
• 𝑗∗ = 𝑗 ! is 𝑡-exact for both the standard and perverse 𝑡-structures.

Remark 1.9:This fails when 𝑓 is not a locally closed embedding. For example in general 𝑓! is only left 𝑡-exact,
but if 𝑓 is a locally closed embedding, then 𝑓! is indeed 𝑡-exact.

Lemma 1.10 ([HTT07, Proposition 8.1.22]):
(a) 𝐹 ∈ 𝑝𝐷≤0 (𝑋 ) iff 𝐻 𝑗 (𝜄∗

𝑋𝜆
𝐹 ) = 0 for all strata 𝑋𝜆 and all 𝑗 > − dim𝑋𝜆 .

(b) 𝐹 ∈ 𝑝𝐷≥0 (𝑋 ) iff 𝐻 𝑗 (𝜄!
𝑋𝜆
𝐹 ) = 0 for all strata 𝑋𝜆 and all 𝑗 < − dim𝑋𝜆 .

2 𝑝 𝑗!F
Exercise 1.7(a) asks us to prove that (under suitable conditions)

𝑝 𝑗!F = 𝜏−𝑑−2 𝑗∗F .

Unfortunately, this is just false.

Example 2.1: Consider 𝑋 the disk, with 𝑍 = {0} and 𝑈 = 𝑋 − {0}. Then let F be any local system shifted by
[1]. It’s known that 𝑗∗F and 𝑗!F are perverse sheaves in this scenario; we can also easily calculate its table of
stalks.

The main point is that 𝑑 = 0 here, and if 𝑗∗F is perverse, then it still must be concentrated in degrees [−1, 0]
(in the standard 𝑡-structure). Then 𝜏≤−𝑑−2 = 𝜏≤−2 always kills it.

So if indeed 𝑝 𝑗!F = 𝜏≤−𝑑−2 𝑗∗F , then 𝑝 𝑗!F = 𝜏≤−2 𝑗∗F = 0. But on the other hand 𝑗!∗F is defined to be the image
(in the abelian category of perverse sheaves) of 𝑝 𝑗!F → 𝑝 𝑗∗F , and 𝑗∗ 𝑗!∗F ≃ F ≠ 0, hence 𝑗!∗F ≠ 0. But clearly
we can’t have something nonzero arising as the image of the zero object.

Remark 2.2: It’s possible there’s a correct formulation involving a truncation of 𝑗!, but I haven’t worked out the
details (and I’m a bit dubious). It can’t be a truncation of 𝑗!, since 𝑗! is right 𝑡-exact in the perverse 𝑡-structure,
hence 𝑝 𝑗! ≠ 𝑗! in general, but 𝑗! is 𝑡-exact in the standard 𝑡-structure, so it’ll commute with any truncation
functor. On the other hand for truncating 𝑗∗, it has to be 𝜏≤? since 𝑗∗ is left 𝑡-exact in both 𝑡-structures, but it
can’t be −𝑑 − 1 or −𝑑 since those correspond to 𝑗!∗ and 𝑝 𝑗∗. But less than that and we’ll run into issues where if
codim𝑍 (𝑋 ) > 1, we might just delete the entire sheaf.

3 𝑝 𝑗∗F
Let’s prove that

𝑝 𝑗∗F = 𝜏≤−𝑑 𝑗∗F .
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In the proofs, we will actually assume that 𝑍 is the union of strata of dimension ≤ 𝑑 , rather than being
purely of strata of dimension 𝑑 . The reason is that we can; we will specifically point out where we need the stronger
hypothesis (that 𝑍 is the union of strata all of which are dimension 𝑑) and highlight it in blue; only in these places
is it necessary to assume.

Claim 3.1: 𝜏≤−𝑑 𝑗∗F is a perverse sheaf.

Proof. We need to check that 𝜏≤−𝑑 𝑗∗F ∈ 𝑝𝐷≤0 ∩ 𝑝𝐷≥0.
• First we check 𝑝𝐷≤0; we will use the condition from Lemma 1.10(a). Let’s consider when𝑋𝜆 ⊂ 𝑈 and𝑋𝜆 ⊂ 𝑍 .

– If 𝑋𝜆 ⊂ 𝑈 , then we have

𝜄∗
𝑋𝜆

𝜏≤−𝑑 𝑗∗F = 𝜄∗
𝑋𝜆

𝑗∗𝜏≤−𝑑 𝑗∗F = 𝜄∗
𝑋𝜆

𝜏≤−𝑑 𝑗
∗ 𝑗∗F = 𝜄∗𝑋𝜆

𝜏≤−𝑑F ,

since 𝑗∗ is 𝑡-exact (since it’s inclusion of open subset). Then since F is perverse on 𝑈 , all of whose
strata are dim > 𝑑 , it’s clear that F is concentrated in degrees < −𝑑 , hence 𝜏≤−𝑑F = F . Then the
condition that 𝜄∗

𝑋𝜆
F has no cohomologies of degrees > − dim𝑋𝜆 is implied by F being perverse on𝑈 .

– If 𝑋𝜆 ⊂ 𝑍 , then we need to check that

𝜏>− dim𝑋𝜆
𝜄∗𝑋𝜆

𝜏≤−𝑑 𝑗∗F = 0.

But 𝜄∗ is 𝑡-exact so this is
𝜏>− dim𝑋𝜆

𝜏≤−𝑑 𝜄
∗
𝑋𝜆

𝑗∗F ,

and since dim𝑋𝜆 ≤ 𝑑 , the truncation functors cross and this is zero.
• Now let’s check 𝑝𝐷≥0; we will use the condition from Lemma 1.10(b). Let’s consider when 𝑋𝜆 ⊂ 𝑈 and
𝑋𝜆 ⊂ 𝑍 .

– Suppose 𝑋𝜆 ⊂ 𝑈 . Following the above, we have

𝜄!𝑋𝜆
𝜏≤−𝑑 𝑗∗F = 𝜄!𝑋𝜆

𝑗 !𝜏≤−𝑑 𝑗∗F = 𝜄!𝑋𝜆
𝜏≤−𝑑 𝑗

∗ 𝑗∗F = 𝜄!𝑋𝜆
𝜏≤−𝑑F ,

since 𝑗 ! = 𝑗∗. But once again 𝜏≤−𝑑F = F so the condition is implied by F being perverse on𝑈 .
– Now suppose 𝑋𝜆 ⊂ 𝑍 . We need to check that

𝜏<− dim𝑋𝜆
𝜄!𝑋𝜆

𝜏≤−𝑑 𝑗∗F = 0.

Now we have an exact triangle

𝜏≤−𝑑 𝑗∗F → 𝑗∗F → 𝜏>−𝑑 𝑗∗F
+1−−→ .

Applying the exact functor 𝜄!
𝑋𝜆
, we get

𝜄!𝑋𝜆
𝜏≤−𝑑 𝑗∗F → 𝜄!𝑋𝜆

𝑗∗F → 𝜄!𝑋𝜆
𝜏>−𝑑 𝑗∗F

+1−−→ .

Since 𝜄!
𝑋𝜆

𝑗∗ = 0, the middle term is zero. Thus we get an isomorphism

𝜄!𝑋𝜆
𝜏≤−𝑑 𝑗∗F ≃ 𝜄!𝑋𝜆

𝜏>−𝑑 𝑗∗F [−1] =⇒ 𝜏<− dim𝑋𝜆
𝜄!𝑋𝜆

𝜏≤−𝑑 𝑗∗F ≃ 𝜏<− dim𝑋𝜆

(
𝜄!𝑋𝜆

𝜏>−𝑑 𝑗∗F [−1]
)
.

Note that the term on the right is rewritten (after “commuting” the truncation with the shift) as(
𝜏≤− dim𝑋𝜆

𝜄!𝑋𝜆
𝜏>−𝑑 𝑗∗F

)
[−1] .

But 𝜏>−𝑑 𝑗∗F is concentrated in degrees > −𝑑 , and 𝜄!
𝑋𝜆

is left 𝑡-exact, hence 𝜄!
𝑋𝜆
𝜏>−𝑑 𝑗∗F is still concen-

trated in degrees > −𝑑 ; but then 𝜏≤− dim𝑋𝜆
kills it if dim𝑋𝜆 ≥ 𝑑 , i.e., dim𝑋𝜆 = 𝑑 for all 𝜆. This is exactly

where we need the hypothesis that 𝑍 is a union of strata which are all of the same dimension.
□

6



Remark 3.2: Note that truncation functors are not triangulated functors, i.e., do not send exact triangles to
exact triangles.

Remark 3.3: In general, I would imagine that the condition

𝜏<− dim𝑋𝜆
𝜄!𝑋𝜆

𝜏≤−𝑑 𝑗∗F = 0

for all 𝑋𝜆 strata in 𝑍 is false without the hypothesis that all 𝑋𝜆 satisfy dim𝑋𝜆 = dim𝑍 , however I don’t have a
counterexample here.

Now we return to proving that 𝑝 𝑗∗F ≃ 𝜏≤−𝑑 𝑗∗F .

Proof of Exercise 1.7(b). Now that we know it’s a perverse sheaf, we have the following exact triangle via (standard)
truncation functors:

𝜏≤−𝑑 𝑗∗F︸    ︷︷    ︸
★

→ 𝑗∗F → 𝜏>−𝑑 𝑗∗F︸    ︷︷    ︸
2

+1−−→ .

Then by the long exact sequence of perverse cohomology functors and using the claim that 𝜏≤−𝑑 𝑗∗F =
0𝐻 0 (𝜏≤−𝑑 𝑗∗F ), we have

𝑝𝐻−1 (𝜏≤−𝑑 𝑗∗F )︸              ︷︷              ︸
=0

→ 𝑝𝐻−1 ( 𝑗∗F )︸       ︷︷       ︸
=0, 𝑗∗F∈𝑝𝐷≥0

→ 𝑝𝐻−1 (2) → 𝑝𝐻 0 (★)︸  ︷︷  ︸
=★

→ 𝑝𝐻 0 ( 𝑗∗F ) → 𝑝𝐻 0 (2) → 𝑝𝐻 1 (★)︸  ︷︷  ︸
=0

.

We need to verify that 𝑝𝐻−1 (2) = 𝑝𝐻 0 (2) = 0; this will imply that ★ = 𝑝𝐻 0 ( 𝑗∗F ), which is what we want.

Claim 3.4: 2 := 𝜏>−𝑑 𝑗∗F ∈ 𝑝𝐷≥1.

Proof. For this we use Lemma 1.10(b). We need to know that for all strata 𝑋𝜆 , that

𝜏<− dim𝑋𝜆+1𝜄
!
𝑋𝜆
𝜏>−𝑑 𝑗∗F = 0.

First suppose 𝑋𝜆 ⊂ 𝑈 . Then
dim𝑋𝜆 > 𝑑 =⇒ dim𝑋𝜆 − 1 ≥ 𝑑,

so first we have 𝜏>−𝑑 𝑗∗F which is a complex concentrated in (standard) degrees > −𝑑 . Then 𝜄!
𝑋𝜆

is left 𝑡-exact
for the standard 𝑡-structure, so it’s still concentrated in degrees > −𝑑 . Finally 𝜏<− dim𝑋𝜆+1 now only takes those
integers 𝑛 for which 𝑛 < − dim𝑋𝜆 + 1 ≤ −𝑑 and 𝑛 >= 𝑑 , for which there are none; thus it’s zero.

Now suppose 𝑋𝜆 ⊂ 𝑍 . Then dim𝑋𝜆 ≤ 𝑑 . Now applying the exact functor 𝜄!
𝑋𝜆

to the exact triangle

𝜄!𝑋𝜆
𝜏≤−𝑑 𝑗∗F → 𝜄!𝑋𝜆

𝑗∗F → 𝜄!𝑋𝜆
𝜏>−𝑑 𝑗∗F

+1−−→,

note that 𝜄!
𝑋𝜆

𝑗∗ = 0, hence we get
𝜄!𝑋𝜆

𝜏>−𝑑 𝑗∗F = (𝜄!𝑋𝜆
𝜏≤−𝑑 𝑗∗F )[1] .

Now knowing that 𝜏≤−𝑑 𝑗∗F is a perverse sheaf, we know that

𝜄!𝑋𝜆
𝑗∗F ∈ 𝐷≥− dim𝑋𝜆 ,

hence the shift by [1] yields the result. □

□

As a result, we can once again construct 𝑝 𝑗∗ “step by step.”
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3.1 Alternate proof
We can prove it alternatively using the perverse 𝑡-structure exact triangle

𝑝𝜏≤0 𝑗∗F → 𝑗∗F → 𝑝𝜏>0 𝑗∗F
+1−−→ .

Alternative proof of Exercise 1.7(b). Note that 𝑗∗ is left 𝑡-exact in the perverse 𝑡-structure, so

𝑝𝜏≤0 𝑗∗F = 𝑝 𝑗∗F

and 𝑗∗F ∈ 𝑝𝐷≥0. It remains to show that

𝑝𝜏>0 𝑗∗F ∼−→𝜏>−𝑑 𝑗∗F .

But note that applying the 𝑡-exact 𝑗∗, the exact triangle returns

F ∼−→F → 𝑗∗𝑝𝜏>0 𝑗∗F
+1−−→,

hence 𝑗∗𝑝𝜏>0 𝑗∗F = 0 and 𝑝𝜏>0 𝑗∗F = 𝑖∗G is supported on 𝑍 . Now from the fact that a perverse sheaf on 𝑌 is
concentrated in standard cohomology degrees − dim𝑌 to 0, we have that G ∈ 𝐷>−𝑑 . Since 𝑖∗ is 𝑡-exact in both
𝑡-structures it’s also true that 𝑝𝜏>0 𝑗∗F ∈ 𝐷>−𝑑 . But note that 𝑍 is a disjoint union (topologically) of its strata (see
Remark 1.3), so being perverse with respect to the stratification on 𝑍 is just the same thing as being local systems
on each component on 𝑍 , but shifted by 𝑑 = dim𝑍 . (Here we really need the condition that 𝑍 is comprised of
strata all of which are the same dimension!) In other words, Perv(𝑍 ) ≃ Loc(𝑍 ) [𝑑] ⊂ 𝐷 (𝑍 ): inside the derived
category of sheaves on 𝑍 , constructible with respect to the stratification on 𝑍 , the abelian subcategory of perverse
sheaves (with respect to the stratification on 𝑍 ) is nothing more than the abelian subcategory of local systems on
𝑍 (i.e., local systems on each component of 𝑍 ) shifted by 𝑑 . Therefore the two truncation functors commute for
(complexes of) sheaves supported on 𝑍 (and constructible with respect to the given stratification). Now we have
a natural map

𝑗∗F → 𝜏>−𝑑 𝑗∗F

given by the exact triangle for truncation functors from the standard 𝑡-structures. Now 𝑝𝜏>0 is a functor (but not
a triangulated functor) so we can apply it to obtain an induced map

𝑝𝜏>0 𝑗∗F → 𝑝𝜏>0𝜏>−𝑑 𝑗∗F .

Now since the two truncation functors do the same thing, we can kill the left truncation functor and we have an
induced map

𝑝𝜏>0 𝑗∗F → 𝜏>−𝑑 𝑗∗F

of complexes supported on 𝑍 , which clearly induce isomorphisms on the cohomologies, which are just local sys-
tems on 𝑍 (but they are obtained by degrees > 0 in the perverse 𝑡-structure, or by degrees > −𝑑 in the standard
𝑡-structure; the point is that they are the same). So we’ve exhibited a map which induces isomorphisms on the
cohomologies (in either 𝑡-structure that you want to use), hence the result. □

Remark 3.5:The core of this proof is that once we have complexes supported on 𝑍 , constructible with respect
to the stratification on 𝑍 , then the two 𝑡-structures agree up to shift by 𝑑 : they’re both just local systems on 𝑍 ,
just in different (standard) degrees.
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